If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+8k-23=0
a = 1; b = 8; c = -23;
Δ = b2-4ac
Δ = 82-4·1·(-23)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{39}}{2*1}=\frac{-8-2\sqrt{39}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{39}}{2*1}=\frac{-8+2\sqrt{39}}{2} $
| 3q^2-8q-15400=0 | | 50q^2+20q=0 | | 180=58+9x-6 | | 12=2+v/2 | | 180=16x-4+58 | | 3q^2+10q-8000=0 | | 31=u/3+15 | | v/2+11=15 | | 0.75-c•7=2.80 | | 0.75+-c•7=2.80 | | 3x+25=64 | | 50-3/p=2 | | 7c+-0.75=2.80 | | 14+x-6=5x | | 3x-2x=15+4 | | (5z+8)(5-z)=0 | | -17+x=2(4-2x) | | 1/5x-1/2+1/3x=-17/66 | | -5≥-4a;a=2 | | 52/105=3/5x+x-4/7 | | -3(2x-7)=-3 | | -2{n+3-4=8 | | n^2+9n-40=0 | | -8/9+1/7x-3/7x=-298/315 | | D(t)=0.33t^2 | | -68/11=-4x-4x-4 | | 3x-(5x+8)=8x-18 | | 3x/2-2=4/3 | | 4x+2x=3+9 | | -15x=15x | | 15x+3=18x-5 | | J=-19x-2 |